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J. Php. A Math. Gen. 25 (1992) 3449-3472. Pnnted in lhe UK 

Energy transport and detailed verification of Fourier heat law 
in a chain of colliding harmonic oscillators 

?bmai Prosen and Marko Rohnik 
Centre for Applied Mathematics and n~eorelical Physim. University of Maribor, Krekwa 
2, SLOd2OW Maribor, Slovenia 

AbstracL We sludy a simple nonlinear classical Hamiltonian system with pasitive K -  
entmpy, a model for heat mnduction, and we find that it o b e ~  the Fourier heat law. 
Numerical simulation of i ts  dynamics can be performed ve'y efiicienily, 90 we are able 
lo explore i t  in detail. We verify lhe Fourier h a t  law and calculate the coefficient of 
thermal mnduclivily h' bj three independent methods. ?he fin1 is direct simulation, 
i.e. sirtiuiaiiiig iiir djmnmicr oi ihe dinin kiwern iwo heai resetyoin. Tic second is 
GreenXubo formalism which is derived in a self-contained manner. ?he third methnd- 
the one-sided heating of xmi-infinite mld chain-is new and give, the best results. It 
yields lhe entire tempenlure dependence I<(T) in a single numerical simulation and 
definitely demonmates L e  validity of llie Fourier heat law at all lemperalures for the 
given syslem. We believe lhat this method can also be useful for other sysems. We 
derive analytically Ole asymptotic behaviour of the coefficient of thermal mnducliviry at 
IOW temperatures T i  0 and observe lhat it agrees ullh numerical results obtained bj 
the Green-Kulm formalism, which gives by far the besl results at wy IOW temperatures. 

1. Introduction 

1.1. H&oy 
Understanding macroscopic phenomena and their statistical laws in terms of deter- 
ministic microscopic dynamics has heen one o l  the outstanding problems in the field 
of statistical physics ever since the pioneering works by Maxwell and Boltzmann and 
generally it is still a major challenge (Lebowitz and Spohn 1983). The fundamental 
question behind such studies is the understanding of the origin of the ureversibil- 
ity and its compatihility with the time reversible deterministic microscopic dynamics 
(Peierls 1979). 'Among the problems of primaq' importance in this context are the 
transport phenomena, such as Fick's law of self-diffusion (Lebowitz and Spohn 1982, 
1983) and the Fourier law of heat conduction (Lehowitz and Spohn 1978, Casati 
1985). Microscopic understanding of heat conduction is still an open problem. In 
general, we are unable to  derive the Fouricr heat law from the  microscopic equations 
of motion, which states that heat current is proportional to the negative gradient of 
the temperature. 

However there is one important special case, namely the Lorenu gas in the 
Boltzmann-Grad limit, discussed by lehowitz and Spohn (1978) in which an analytic 
theory and proof of the Fourier heat law has been successful. The Lorentz gas 
by definition consists of independent non-interacting point particles (wind particles) 
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moving freely among the randomly situated hard spherical scatterers of radius R and 
density p. OJpon hitting a scatterer a wind particle is specularly reflected.) The 
Boltzmann-Grad limit is defined by p -+ 00, R -+ 0 but such that the mean free 
path l / ( p R z )  is fixed and finite, whilst the volume pR3 occupied by the spherical 
obstacles goes to zero. Their rpproach is special in the sense that they actually look 
at an ensemble of statistically similar Larentz gas systems, rather than analysing an 
individual deterministic dynamical system. Moreover, in the said Boltzmann-Grad 
limit the internal structure of the underlying Hamiltonian dynamical system becomes 
infinilely complicalrd ( p  + ma), which obscures (what we feel to be) the essential 
p i n t ,  namely that the Fourier heat law can be a consequence of a simply defined but 
non-integrable and chaotic dynamics. In this spirit the derivation of the Fourier heat 
law is still an open theoretical problem awaiting a general solution. 

But on the other hand we can always solve the equations of motion numerically 
ior systems, which consist or' a suficientiy high number of particies, such that the 
thermodynamic limit is reached at least approximately. Even this is a very difficult 
task for reasons which we shall give later on. The first successful numerical simulations 
were performed only ten years ago. The reason for this is the following. Integrable 
systems (such as harmonic chains) wbicb are the easiest to work with do not show any 
diffusive energy transport behaviour compatible with the Fourier heat law. The reason 
is *a: they posess k,-,des:;i;c:ib!e nxma! modes whkh aiiy enei~y back and faith 
without any kind of dispersion because the energy stored in a given normal mode is 
a constant of motion. We need a mechanism which would destroy these constants of 
motion and therefore redistribute energy among the modes. Such a mechanism must 
also destroy the integrability of the system, because otherwise some other nonlinear 
normal modes would exist. Casher and Lebowitz (1971) showed analytically that a 

which is in agreement with our argument. 
It is not known what are the precise necessary and sufficient conditions for a 

system to obey the Fourier heat law. The numerical experiments by Casati (1985) 
on diatomic one-dimensional hard-point gas, which is a non-integrable system, were 
quite inconclusive because the thermodynamical limit was hardly reached. The chain 
of atoms and the observation time should be much longer. (This non-integrable 
system exhibits mixing but its K-entropy vanishes.) 

So far the only convincing results have been obtained for systems with positive 
K-entropy. (However, hard chaos is more likely a sufficient rather than necessary 
condition for the validity of the Fourier heat law.) The first positive results for such 
systems were given by Mokross and Biittner (1983) for a diatomic ?bda chain. But 
their system is somehow inconvenient for numerical investigations and their results 
are not very accurate. The first really convincing and accurate demonstration of the 
Fourier heat law in a classical system was given by Casati el al (1984). They took a 
chain of fixed equidistant hard-point harmonic oscillators and put a free particle of 
the Same m a s  between each pair of them. They have checked the Fourier heat law at 
a fairly low temperature and showed that at high temperatures the energy transport is 
no longer diffusive and therefore the Fourier heat law no longer holds. They argued 
that their ding-a-ling model (as they called it) approaches the limit of monoatomic 
hard-point gas at high temperatures, which is integrable. In this integrable limit it 
h not inconceivable to find a sharp transition such that at temperatures higher than 
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a certain well defined critical temperature the Fourier heat law definitely would not 
apply. The same qualitative argument also holds for our model, and yet we have 
established the validity of the Fourier heat law at higher temperatures as we will 
show and discuss later on. So we do not find any sharp ‘phase transition’. 

Casati er af (1984) have employed two independent methods: direct simulation 
of the chain between two stochastic heat reservoirs with different temperatures; and 
the Green-Kubo formalism. They found that the results of both were in agreement, 
which is quite convincing. We have used these two methods as well, and devised a 
new one which gives by far the hest results. In this way we confirm the results by 
Casati er af (1984) and complement them by increasing the statistical significance and 
particularly by studying the temperature dependence of the heat conductivity. 

1.2. Motivation 

The motivation for our work is twofold. In the first place we want to show the validity 
of the Fourier heat law in the simplest possible dynamical system, realized as a one- 
dimensional chain which is chaotic and has positive li-entropy. Second, we want to 
explore the temperature dependence of the coefficient of thermal conductivity I<(T), 
and find out for which temperature intervals the Fourier heat law holds and where it 
possibly ceases to hold, and what kind of transition would occur between these two 
regimes. It turned out that there is no such transition for our model, as the Fourier 
heat law is obeyed at all temperatures. This is the most natural interpretation of our 
results and we will explain it later. 

In section 2 we will present the definition of our model and describe the basic 
properties of its chaotic dynamics. 

In section 3 we will present the first numerical method in studying the energy 
transport which we call the direct method. It is simply a simulation of a real physical 
experiment. We consider the chain of length N and couple the first particle to the 
stochastic heat reservoir with temperature TL and the last particle to another heat 
reservoir with temperature TR. Then we observe two quantities while simulating 
the dynamics of the system, namely the heat current J through the system and the 
temperature gradient V T  in the system. The transport coefficient It-,,, is defined a s 
- J/VT and the Fourier heat law states that this must he asymptotically independent 
of N i.e. the Limit IimN-.- ICN must exist and must he equal to I< by definition. 
The results obtained by this method will he presented and the difficulties in using it 
will be explained. 

In section 4 we will derive the Green-Kubo formula from first principles and then 
specialize to the one-dimensional discrete chains. The results of calculations using 
the Green-Kuho formula are compared with those of the direct method. 

The new method is presented in section 5 and is based on one-sided heating of the 
semi-infinite cold chain. We are interested in the non-stationary problem-simulating 
the heating of initially cold semi-infinite chain on one side by a single stochastic heat 
reservoir with temperature TL. We study the time development of the total energy 
and the temperature profile of the chain. We find the scaling exponents as predicted 
by the Fourier heat law. Using this data we can deduce the entire function IC(T) 
for the whole temperature interval 0 < T < TL and demonstrate that the Fourier 
heat law holds in this temperature interval. 



3452 

2. Basic properties of dynamics 

Our model system is a simplification of Casati's ding-a-ling model. The difference is 
that in our chain of fixed harmonic hard-point oscillators which are allowed to collide 
there are no free hard-point particles in between. We think that the introduction 
of free particles in order to obtain an elhcient mechanism for the redistribution of 
energy among oscillators is not necessary. Our chain consists of harmonically hound 
particles of only one kind with a hard-core interaction among them. Between the 
elastic collisions of hard-point particles, they behave just as independent oscillators. 
We call this system the ding-dong model due  to the onomatopoetic analogy with the 
ding-a-ling model. 

Formally, our dingdong system is described by the Hamiltonian H = 
E:='=, {p",2m + m w z q : / 2 }  with collision condiiions qbtl + a 2 qk where a is 
a lattice constant and q, is the distance of the kth oscillator from its k ing  point. We 
have three parameters, m , w  and a, which can all be eliminated by the introduction 
of dimensionless variables q k / a  + q l , p l ; / ( n i u n )  - p , ,  H / ( m w 2 a 2 )  -+ H. Note 
that after introducing the energy unit the unit  of temperature is m w 2 a 2 / k B ,  where 
k, is the Boltzmann constant. Our model now has no free parameters and can he 
simply written as 

T Prosen and M Robnik 

q k f l  + 2 qk. (2) 

This is one of the simplest many-body Hamiltonians that one can imagine hut it 
shows highly irregular dynamics. Besides the energy it possesses only one additional 
constant of motion namely the centre-of-mass-motion energy 

The dynamics of the system is trivial if the total energy E is lower than the 
threshold energy E, = i. In that case the oscillators are unable to collide and are 
therefore effectively independent. The threshold energy E, is defined by the minimal 
energy that two oscillators must have in order to collide: q ,  = -qk+l  = ?, p k  = 
r*+, . . = - n " ,~* , . ,~  T. I J  + rl.,,l ?,?> / 3  = - L 4 '  Ahnve rhr threshold the dynamia hecomes high!y 
irregular and the so called stochastic transition occurs (see figure 1). 

One can easily show that the ding-dong model possesses interesting types of 
motion which can be called quasi-solitons. If we have all oscillators initially at rest 
qk = p k  = 0 and then hit the first oscillator to reach momentum p ,  > 1 we 
observe that we get a non-desfructive localized pulse which propagates through the 
'cold' chain and leaves the cold chain behind for some discrete values of initial 
momentum p',"' = 1/ cos( ~ / ( 2 ( T l +  1)))  (Prosen 1991). Figure 2 shows the contrast 
between chaotic motion and regular motion of a quasi-soliton in a dingdong chain. 

Here we shall dedicate a few words to the numerical method and its efficiency 
analysis. Between two subsequent collisions the dynamics of the ding-dong chain 
remains trivial-the simple unfolding of equal-frequency sines. It takes only a small 

1 
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the logarithm of energy E - E, for the three-panicle cyclic chain. The centre-of-mass- 
molion was eliminated by stting E' = 0, sm lhe syslem has eEsentially two degrees of 
freedom. We have investigated the Ii-entropy for longer chains loo but we have not 
observed any qualitative changes. 

number of floating point operations to determine the time of the next collision if 
the coordinates at the previous collision are known. We call such a procedure a 
one-step inlegration. One can observe that almost any other non-trivial model of a 
chain of mlliding particles requires solving the transcendental equation at each such 
one-step. In the case of the ding-a-ling model (Casati et al 1984) one must solve a 
transcendental equation of type a l + b  = s i n ( t )  at each step. Now we shall determine 
how many floating point operations are required in the one-step. Determination of 
the time of the next collision takes only one evaluation of the arctangent. Then we 
must transform the coordinates ( q k , p , , )  to the time of next collision. One might 
think at  first sight that this should take O( N )  floating point operations. But we can 
do much better. We do not need to transform the coordinates of all oscillators but 
only these of the participants in the collision. We must also know where the next 
collision will occur so we must know the predicred time of collision for each pair of 
particles. We shall not go into details here but we only mention that we managed to 
develop an algorithm that takes only O(log( N ) )  operations per one-step by careful 
book-keeping of predicted times and by transforming only what is necessary at each 
step (Prosen 1991), which is an application of searching methods in sophisticated data 
structures (heaps). For tcchnical details the reader is referred, for example, to Knuth 
(1968). 

3. Direct simulation method 

3.1. Preparation of the numerical crpcrimenr 

The direct method is the most natural experiment that one can imagine in this context. 
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Figure 2. The flgure shows a typical chaotic lrajectory (a) oi the eight-panicle cyclic 
chain. l i m e  increases in horizontal direction and the distinct lines correspond to the 
distinct oseilla1on.A vely atypical trajectory is the quasi-soliton (b) which represenls the 
only lype of non-diffusive low-energy transport. 

Tike the chain of N particles and put it between two heat reservoirs. Then wait until 
the conditions become stationary. Then measure the average heat current through 
the system and the temperature gradient, divide them and the result is the coefficient 
of thermal conduction IC,. If it is independent of N when N is large enough then 
we may say that the Fourier heat law holds for a given system. 

But there are some technical questions which occur when one wants to prepare 
such a numerical experiment: What is a heat reservoir and how to implement the 
coupling of edges of the system to the heat reservoirs? We used the same recipe 
which has been used in almost all previous numerical simulations (Jackson el al 1%8, 
Casati ec al 1984). Imagine that the resewoir is modelled by the ideal gas of hard- 
point particles with the Same mass as the mass of the particles of our system and is 
placed behind the wall of contact. When an edge particle crosses this wall it collides 
instantly with one gas particle, takes on its momentum (because they have equal 
masses) and returns back to the  other side of the wall. This interaction looks like 
a collision after which the particle ‘forgets’ its velocity prior to the collision, and its 



Verification of Fourier heat law 3455 

new velocity is distributed aciording to the Maxwell-like distribution 

where Tis an effective temperature of the heat reservoir. The velocity after collision 
must be positive when interacting with the left reservoir, and negative when interacting 
with the right one. Formula (4) can be derived very easily. Factor IuI is a consequence 
of the fact that an edge particle bounces more frequently to the fast free-gas particles 
than to the slow ones (see Jackson el af 1968, Casati 1985). 

Models other than free-gas particles for the heat reservoir would yield distributions 
that would differ from the Maxwell-like (4), and we leave it as an open problem to 
investigate in detail what the consequences are of such other choices. For example, a 
reservoir made up of harmonic oscillators in thermodynamic equilibrium would give 
rise to a Gaussian distribution rather than the Maxwell-like (4). However, we expect 
that, ultimately, the stationary state would be independent of the model of the heat 
reservoir, so we proceed with assumption (4). 

We still need a proper definition of local temperature in the chain. We are 
studying quasiequilibrium statistical mechanics which defines local temperature as 
twice the kinetic energy 

(. . .) represents the thermodynamical average or time average which must coincide by 
assumption. Numerical simulation proceeds as follows. We start with the chain of N 
pa::ic!es ivkh c ~ n d i : i ~ s  qk = 0, pa = 0 an6 NG heat iiser+.oiis zt &:h & g ~  
with effective temperatures TL and TR, where we  can assume TL > TR. We leave the 
system to relax to  the stationary state for about N,,,,, collisions after the simulation 
begins. It is easy to show that N,,,, = U (  N 3 ) .  Due to the random walk the time 
needed for thermal excitations to fill the whole chain is proportional to N Z  if one 
assumes the validity of the Fourier heat law, and the number of collisions per unit 
time is proportional to N so the product is proportional to N 3 .  After the stationary 
state is establkhed we start to measure the time average of interesting quantities. 
These are the temperature field Tk, the average heat current from the left reservoir 
to the chain (JL) and from the chain to the right heat reservoirs (.IR) and perhaps 
several others such as ( q k )  and (q : ) .  We calculate the time average of each of these 
quantities, say p;., as the average over the discrete set of times t ,  = nr ,  n = 1 , 2 , .  . 

with an effective statistical error 

where MT is the total time of simulation. We have found that the best choice for r is 
of the order of the average time between two collisions of a tixed pair of particles. If 
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7 is much larger, then too much of the generated information would be lost. On the 
other hand, a much smaller T means too much computer time spent calculating sums 
(6) and (7) on account of actual simulation (performing the one-step procedure). 

We expect the temperature profile Tk far away from the edges k ,> 1, N - k >> 1 
to he linear Tk - T, = VT( k - 1 ) .  If the stationary state during the simulation is 
reached the averages of currents (JL) and (JR) must be equal within the statistical 
error. 'Ib improve the accuracy we take their average ( J )  = ((JL) + (JR))/2 and 
divide it by -VT which gives the coefficient of thermal conduction I< by definition. 

The question that remains is where to put the walls of the heat reservoirs. We 
tried to put them at the k i n g  points of the edge acillators. The lint oscillator must 
therefore always be on the right side of its k ing  point and vice versa for the last: 
(9,) > 0, ( q N )  < 0. This makes edges very special because (qk) = 0 does not 
apply. These edge effects have turned out to he very annoying at large temperatures 
(s& figure 3). The edges behave effectively like thermal resistors whose resistivity 
increases with temperature, so that almost the entire temperature fall TL - TR goes 
on account of the edges. The temperature gradient far away from the edges that goes 
into the definition of li' is therefore very small and subject to large errors. 

One might argue that reservoir walls expose a kind of pressure on the system 
and that we ought to move them a hit, the left one to the left and the tight one to 
the right. But then the system can lose contact with the thermal reservoirs for some 
initial conditions. 

Fortunately, we managed to eliminate these annoying effects. We have slightly 
modified our model by adding two free particles of unit mass between each of the 
reservoirs and the corresponding edge particle. Now we are able to displace reservoir 
walls because free. particles always maintain contact between heat reservoirs and the 
C1IaI11. q U. nr " b 1 , U L b  L L l r  Y W L L I I I ~ b  L l V l l l  L l l b  bug' pa, ,,..,U 0 .m,,,g y"."L " L E Y  L I Y I . . " "  

wall. The optimal choice for a ( T )  is determined hy the condition that the average 
position of the edge harmonic particle is zero. a is a function of temperature T of the 
corresponding reservoir. When we found out that this idea worh, we realized that the 
free particles in Casati's ding-a-ling model play a similar role. With this modification 
we have to solve a transcendent equation each time two near-edge particles collide. 
Although it takes much more computer time than the evaluation of the arctangent, it 
happens only once in typically N normal collisions and is therefore negligible in the 
limit N + 00 and even in practice when N sz lo2 .  We call this method the improved 
direct method in contrast to the simple direct method. In table 1 we show the optimal 
values of the wall-edge distance a ( T )  for a few most frequently used temperatures. 
The behaviour of a ( T )  is very smooth and so it can be interpolated for values Of 
T that are not in table 1. We have not investigated a ( T )  for lower temperatures 
because the edge effects occur at about T ii: 0.3 and higher and become severe at 
about T ii: 2. 

3.2. Results 

We have performed many numerical experiments for various lengths N and tem- 
peratures T (where T = i(TL + TR), and (TL - T,)/T small). There are some 
serious difficulties at very low and very high temperatures. At very low temperatures 
most of the computer time is spent due  to the bouncing of the edge oscillators at 
the walls, because most of the time they have not enough energy to collide with the 
neighbouring oscillator. This results in very large fluctuations of the heat current and 
the temperature which makes simulation practically impossible beyond T < 0.1. But 

T Prosen and M Rohnik 
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l o l  

T 

4 l b l  

"̂ _.L.̂ " 
r U l l l l Y l l  

Figure 3. ' I l l h e  two kinds of energy profiles are plotled. The fin1 ((1) is a mul l  of simple 
direct method where one nn easily see lhe edge effects. The temperature pmfile TI 
an be fitted will1 the ansalz of the form TI = A e x p ( - o ( k  - I ) ) +  B a p ( - p ( N  - 
k)) + Ck + D in this m e .  The edge effects therefore fall exponentially. ' h e  edge 
effecls are completely eliminated ill llir second temperature profile (b) which is a mul l  
of ihe improved direct melhod. ?he height of the Lsn is the eriimatcd Statistical error. 
Reservoir lemperatures. lengrhs of the chain and h e  limes of simulation are Ihe Same 
forboth profiles: T L = I . ~ ~ , T R =  1.25,N=240,il.I=300000. 

on  the other hand the convergence of K ,  with N is becoming drastically slower 
with increasing temperature, which is not surprising because here we approach the 
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lhble 1. The wlua of the optimal edge-wall distance a(T) for a f m  temperatures T. 

T 4 T )  

0.5 2.40 i 0.03 
1.0 2.07f0.02 
2.0 1.95 f 0.01 
3.0 1.92f0.01 
4.0 1.91 f 0.01 

integrable case of free particles where the Fourier heat law (asymptotically) does not 
apply (Casati 1985). Bble 2 illustrates the convergence of It7,,, for some typical tem- 
peratures. One can see that A-,,,(T = 0.1) has already converged at N = 10 and 
"I. L I I I  " L I I I .  ..'lLI" '.NI' - I.", ""CJ l l " L  W l t v r r g G  C V C L l  I", i" = *'U. LUG yrGsellr 

computer capabilities did not allow us to prove the convergence of I<,,, (i.e. Fburier 
heat law) for T > 3 with the direct method hut we are able to prove it indirectly as 
we will show in section 5. 

nn thn n+hnr h q n r l  V I T  - 1 n\ Ana- -n* ---.,---- -.-- 8-- hr - A n n  -- ------- 

Table 2. llie convergence of Uie memctenl of thermal conduction for finite chains 
K N ( T )  with N .  One a n  easily sec that the rate of mnvergence rapidly decreases with 
temperature. 

N IO 20 30 40 50 60 Error(%) 

K(T=O.IO) 0.3h 0.38 0.36 0.39 0.36 0.38 - 8  
K(T=0.25)  0.74 0.92 1.08 1.11 1.26 1.19 - 7  

I.." I," *on 1 C n  m ,.I" 1," -U .,.,U 420 :nor (%j h, ,, 

K ( T =  2 . 5 0 )  128 173 215 2W 197 2W - 4  
K ( T =  4 . 0 0 )  - 363 400 453 - 486 - 5  

All useful data from our numerical simulations using the direct method are sum- 
marized in table 3 which gives the function I<(T). The last column suggests that 
except for low temperatures K ( T )  cx T 2 .  

Table I llw function l i(T) as obtained by llie direct method at all temperatures for 
which the convergence of 11" with N was clearly observed. For major part of the table 
T > 0.5 the improved direct method was used. 

T l i ( T )  I<( T ) / T 2  

0.1 0.037 f 0.002 3.7 
0.25 1.24 f 0.05 19.2 
0.5 6.6 f 0 .3  26.4 
1.0 3 0 f 1  10.0 
1.5 74 i 2 32.9 
1.8 103f3 31.8 
2.0 128f5 32.0 
2.5 207f6 33.1 
3.0 295f7 32.8 
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4. Green-Kubo formalism 

In this section we derive the Green-Kubo formula for the transport of energy along 
a general homogeneous onedimensional hirice of colriding parricks. The first steps 
of the derivation will follow Vsscher (1974) in a modified version and the last few 
dl specialize to discrete lattices. Our derivation is self-contained unlike Visscher’s 
(1974) and does not refer to quantum mechanics. The derivation is unperturbative 
and is exact up to the final step when we use the assumption of constant temperature 
gradient (15). 

First we have to define the local heat current from the site k to k+ 1. We denote 
it by jk. In order to satisfy the discrete continuity equation 

d 
d t  

we obtain the following expression for the heat current 

(8) - - -Ek( l )  + Vj , ( t )  = 0 E ,  = ; ( P :  + 4:)  vj, = j ,  - j k - 1  

j k  = f(P,,l - P , ) ( P : , I  - P:M¶,+l - 4, + 1 ) .  (9) 

We can prove the last relation by inserting it into continuity equation (8) and inte- 
grating it over a small time interval which covers one collision. 

In the beginning, at time 1, we take a very specially chosen ensemble of initial 
conditions ( q ( t o ) , p ( t o ) ) .  Their distribution will be locally canonical 

From now on in this section we denote by () a locally canonical average (A )  = 
J d q d p A ( q , p ) p , ( g , p )  of any quantity A.  Each particle is in local equilibrium at 
temperature T, but globally this cannot represent stationary distribution. We may 
easily verify this fact by calculating (jk) for an arbitrary temperarurepro~file Tk. After 
using formula (9) and performing a few Gaussian integrals one finds 

( i d t o ) )  = 0. (11) 

This is surprising because one would naively expect (j,) > 0 if T,,, > Tk. But 
the fact (11) simply implies that we have to wait for distribution p, to relax into 
a stationary one. In other words, we have to compute (j,(cu)). It is the famous 
Green-Kubo formula that enables us to do this. 

Let us take arbitrary observable A = A ( q , p )  which is not an explicit function of 
time, a A / a t  = 0.  Time evolution of A can most elegantly be written by means of 
Poisson bracket 

The goal is to calculate ( A ( t ) )  at some later time 1 >> 1,. Now we are able to do 
this almost directly 
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The next step is to substitute a general observable A with a special one, namely 
the average heat current J = N - '  j k .  We might take any local current j, 
instead because in stationary state they are all equal (jk(oo)) = ( J ( m ) )  but the 
fluctuations in J are the smallest. The first term (A(t,)) vanishes by (11) and finally 
we obtain the Green-Kuho formula for thermal conduction 

t N 

( 4 1 ) )  = c V ( l / T k ) J d t ' ( j i ( t o ) J ( f . ' ) )  
1" k = 1  

t 
N ' 

= - v T F ]  d t ' ( J ( t n ) J ( 1 ' ) ) + 0 ( ( V T ) 2 )  
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The coefficient of thermal conduction is proportional to the integral of the heat 
current autocorrelation function. At the right most part of equation (15) we have used 
the fact that far away from the edges the inverse temperature gradient is constant, so 
V ( l / T k )  = V ( l / T )  = -VT /T2 .  

By the so called discrete per-paries summation we have neglected the problem 
of edges where k = 1 , N .  The formulae (14) and (15) are therefore exact only 
for infinite and cyclic (N + 1 5 1) chains, but for finite chains they hold for times 
t - 1, shorter than the sound rran.& lime across the lattice. In the-numerical study 
we considered the cyclic chain. The temperature gradient in the cyclic chain must be 
zero and so is the stationary value of the heat current ( J ( c 0 ) )  hut K remains well 
defined and finite by (16) because V T  cancels out. 

Table 4. The table shows lhe funclion li(T) at moderate and low temperatures as 
obtained by the Green-Kubo formula. The last column suggests the asymptotic behaviour 
(22) which is also confirmed analylically in the appendix. 

7' fi(T) ri ( 7') ex p ( 1 /4 7') 

0.020 
0.030 
0.040 
0.050 
0.060 
0.075 
0.100 
0.250 
0.500 
1.000 
2.000 

( 1 . 2 i 0 . 7 )  x 
(9.5 i 2.0) x 
(6.0 A 0.5) x 10-4 
(2.45 i 0.1) x 10-3 
(6 .0  + 0.3) x 10-3 
( 1 . 3 6 i 0 . 0 5 )  X IO-' 
(3.8i0.2) x 
2 . 1  *O.l 
6 . 3  f 0.3 
2 9 . 5 +  1.5 
120 * 10 

0.349 
0.395 
0.31 1 
0.364 
0.387 
0.381 
0.463 
3.0 

10.4 
37.9 

136 

The formula (16) is the final result but for numerical study it still needs some 
modifications. We observe that the heat current is defined through the &function 
(9) and might therefore look nicer in integrated form. Let us define its integral 
- A Q ( t i j t i )  = N f" d t ' . l ( t ' ) ;  which is equal to the integratcd total energy flowt in 
cyclic chain between times 1 ,  and t7 We retain the dependence on initial and final 
time in IC 

J f I  

(17) 
1 

T ,  t o ,  t )  = ( J (  kI)AQ(t", t ) ) .  

K(T,t , ,  t )  depends only on the difference f - 1 ,  and practically reaches its limiting 
value for 1 - t o  > 1 ,  where 1, is a ctu"risric reluxation lime. We may approximate 
the limit K ( T )  by a n  average over t o ,  l i ( 7 ' )  x (1/L) ~ ~ d t o Z ~ ~ ( 7 ' , t , , 1 )  where the 
error is of order 1 , / 1 .  Thus, the limit 

is exact. Now we insert (17) into (1s) and perform integration over 1,. J ( & )  in (17) 
differs from zero only at times of collisions and AQ(to ,  t )  is always a finite and well 

t It  is the sum of the energy exchanges in a11 collisivns 
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behaved function. By v( t )  we denote the number of collisions between times 0 and t 
and enumerate them with integers 1 , 2 , .  . . , u ( t ) .  Let A Q j  be the energy exchange 
at j t h  collision. Then 

T Prosen and M Robnik 

K(T)  = 1-CU lim K(T , t ) .  (20) 

We have used the formula for integration over the 6-function J d 1 6 ( t  - t , ) f ( t )  = 
)(f(t, + 0) + f(t, - 0)). One can rewrite the result (19) in a more compact form 

We have used the Metropolis algorithm (Press er al 1990) to generate initial conditions 
( q , p )  = (q ( to ) ,p ( to ) )  and to calculate the canonical average () as an average over 
many such Metropolis iterations. At moderate temperatures of order unity typically 
a few thousand Metropolis iterations were needed to obtain f<( T) within the given 
statistical error, whilst at very low temperatures below 0.1 (see table 4) we used 
ry?ica!!y a few ten thousand i!erationsi due to larger fluctuations, After we senerate 
an ensemble of initial conditions we simulate the dynamics of the system until an 
expected time such that the average K (  T, t )  relaxes to the stationary value, see 
figure 4. The criterion of stationarity of f<( T ,  t )  is that  the variation of the average 
value of fC(T,t)  is much smaller than the estimated statistical error. The only 
practical question which remains open is the length of the cyclic chain. The result 
may depend on N but the experience shows that this dependence k not drastic, for 
example K(T = i , N  = 2 5 )  = 6.5 i 0.3, K(T = i , N  = 5 0 )  = 6.1 * 0.2. 
vpical values of N in our numerical experiments were between 20 and 50. Bble  
4 shows the results for f<( T) obtained by the Green-Kuho formula. The numbers 
in the second half of the table should he compared with those in table 3 (the direct 
method). As we have already mentioned, the Green-Kubo formula is particularly 
suitable for investigation at very low tempcratures. One can verify the asymptotic 
formula as derived in the appendix 

K(T -+ 0) = (0.38 * 0.02)exp (-1/4T) (22) 

which holds very well for T < 0.1. 
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I c 
200 L o a  600 800 

t 
Figure 4 The mnvergence of K ( T ,  1 )  wilh t as defined by the Green-Kub formula 
(19) for T = 0.5. ?lie average was Mken over 3000 different initial mnditions. The 
p i n t s  in lhe haWh-6lled area are within Ule slatistical one-sigma mor. 

5. One-sided heating of semi-infinite cold chain 

5.1. Reparation of Ihe numerical crperimcnt and scaling aponents 

According to the results of the direct and the Green-Kubo methods we cannot decide 
whether the Fourier heat law holds at high temperatures (T > 3) or not. We need a 
new method which will not depend on the length of a chain. We have constructed such 
a method which is non-stationary and therefore depends on the time of simulation. 
But fortunately, the average time behaviour of the results is quite predictable and 
can be easily extrapolated to infinity where definite conclusions about validity of the 
Fourier heat law can be drawn. 

Now we will present our ideas in detail. We are heating an initially cold semi- 
infinite chain on one side. By cold we mean that all oscillators are at rest. In 
practice we have a very long ding-dong chain of several ten thousands of particles 
which is coupled to the stochastic heat reservoir with temperature TL through its first 
oscillator panicle. The coupling is the same as in the simple direct method. Then 
we follow the time evolution of such a system with initial conditions qk = O,pk = 0. 

E ( t )  which is equal to the integral of the heat current from the heat reservoir to the 
system bom time 0 to t .  Asymptotically it should scale like a power law 

We pppecia!!y interested the tat.! efi~rgt ef the pvrtem 2 fidECti=c nf dpLe 
J"1-a -  

E(1) a t "  t - a s .  (23) 

One would expect v = 1 for non-diffusive sound-like transport of energy and v = f 
for diffusive energy transport typical of the Fourier heat law. In the first case the 
energy propagates in mutually independent modes which flow from the heat reservoir 
with constant velocity. The ability of the system to absorb energy does not change in 
time and therefore E ( t )  grows linearly. On the other hand in the second case E ( t )  
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must increase like a square root h as a consequence of the symmetry propeny of 
the generalized diffusive equation as we will show in our phenomenological theory in 
the next subsection. 

The major task is to carefully determine the exponent v from our numerical data. 
In practice we calculate the functions such as E ( t )  as the averages over many such 
heatings and we call them macro iferafions. Fluctuations around these averages give 
us information about the statistical error of our results. 

For the sake of completeness we have observed the behaviour of another three 
quantities, as functions of time t ,  

T Prosen and M Robnik 

kmax(t) = maxtklq: + P :  > 0). (26) 

We also define the corresponding asymptotic exponents pI,*, X by ( k ) ( t )  a 
t”r,,,@j(t) a t”2,km,,(t) a t A .  It will soon become clear (in the next sub- 
section) that in a well defined regime of energy transport the exponents v, G ~ , ~  must 
be equal p1 = p2 = v. But the exponent X of the wavefronr propagalion cannot he 
calculated at the phenomenological Icvcl. We can explain its behaviour by means of 
quasi-solitons (mentioned in section 2). They rcprcsent the most effective propagation 
of a disturbance into a cold chain. 

Figures 5,  6 and 7 respectively show the time behaviour of the quantities E ( t ) ,  
( k ) ( t ) ,  m(t) and the corresponding effective exponents d log E ( t ) / d l o g  1 , .  . . 
which must asymptotically (as t -+ M) converge towards the scaling exponents ~ , p ~ , ~ .  
Although this limit has not been reached in time of observation these quantities can 
be excellently fitted by the ansatz of the form 

l o g E ( t ) = A +  B l o g t + C / l o g t  (27) 

where A ,  B and C are the fitting parameters. This ansdtz has the property that its 
derivative d log E ( t ) / d  log t posscsscs a finite limit liint+m d log E ( t ) / d  log t = 
B = v and it gives the smallest value of standard s2 test, which makes it unique. 
The value of x? is so small that wc could not decrease it by adding any additional 
parameters to (27); for example +D!(log t ) ’ .  

There is another argument in support of the ansdtz (27), namely the high quality 
of the results. All values of the pardmcter B (which is equal to the scaling exponent v 
or gl,2 for other two functions ((24) and (25)) are equal to 1 /2  within the estimated 
error with no exceptions for all tempcraturcs T = 0 . 2 5 , 1 , 2 , 4 , 6 .  See table 5. This 
result is really striking and it provides us with the strongest numerical proof for the 
validity of t h e  Fourier heat law. 

5.2. The inverse fransforni and calculalion of I<( T )  

Besides the average quantities such as E(t),(k)(t) and m(t) we can study the 
evolution of the entire temperature profile of the chain T(z = k , t )  = ( p i ) .  We 
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In t 

Figure 5. lhe convergence of the scaling exponent v for one-sided heating 01 semi- 
infinite cold chain at TL = 4 is shown. Graph (0)  shows the scaling exponent obtained 
by the simulation (Ihe dark line is the best fit) whereas graph (b)  shows ils logarithmic 
derivative (and its extrapolation on the right side of the vertical dotted lines). The 
vertical position of the box on ( b )  is the limiting value 01 the corresponding scaling 
exponent and ils height is the estimated slalistical crror (1 a). 

can determine I<( T )  by measuring T (  z, t ) .  At first sight we have too  much data in 
the function of two variables T (  z, t )  to determine the function of a single variable 
K(T) .  But due  to the scaling properties in time we can relate it uniquely to the 
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In f 

Figure 6. AF figure 5, hut for llir scaling exponent p , .  

function l i ( T ) .  
We neglect the discrete microscopic structure of our system and replace the 

discrete index k by the smooth variable z. Let us first postulate the Fourier heat law 

(28) 
a 
ax J ( z , t )  = - l i ( T ( x , t ) ) - T ( x , t ) .  

The current J satisfies the continuity equation (aJ(z , l ) /az)  = - ( a E ( z , t ) / a t )  
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5 6 7 8 

Figure 7. hr. figure 5 ,  hut for the scaling exponent i t 2  

where E ( z , t )  is now energy per lattice site at R: or energy density and is assumed to 
depend only on temperature E ( z , l )  = E( T(  z, 1 ) ) .  When we insert equation (28) in 
the =.ti..$ P"lllti"" wp get 2 ge.er.!i.cd djffccjofl q&ofl (I+])  fiimp..in..s 

(29) 

J -1"--'-.. 

a a a - ( ~ ~ ( T ( z , ~ ) ) - ~ ( ~ ~ , 1 ) )  = C(T(R:,t))-T(z,1) ax a x  at 

where we have introduced C ( T )  the specific heat capacity C ( T )  = (OE(T) /aT) .  
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lbble 5. The exlnpolaled limiting values of the scaling exponenls for a wide n n g e  of 
temperalures. They are all close lo the predicted limiting value $ wilhin the slandard 
deviation which is about 0 .02  for most of them. 

T u  111 P 2  

0.25 0.45 0.54 0.54 
1.0 0.47 0.49 0.51 
2.0 0.44 0.50 0.51 
4.0 0.49 0.52 0.52 
6.0 0.52 0.49 0.49 

We note that equation (29) is invariant on one-parameter group of transformations 
( z , t )  -+ ( a x , a 2 t )  for arbitrary real positive a, and so a re  the boundary and the 
initial conditions T ( 0 , t )  = T,, T ( z  > 0,O) = 0. The  solution T ( z , t )  must have 
the same symmetries, i.e. we can write it as a function of a single variable s = 
x/&, T(z,t) = .(./A) = r(s). This is also the reason why all scaling exponents 
U, p l ,  p2 must be equal to ;. When performing this substitution in equation (29) it 
becomes an  ordinary second-order differential equation for function ~ ( s )  

1 
ds d s 

But we are seeking the function k ? ( ~ ) ,  which is obtained by direct integration of (30) 

The function s ( r )  is the inverse of r ( s ) ,  and exists uniquely because ~ ( s )  falls 
monotonically. The limits in the definite integral are chosen to give l i ( 0 )  = 0. 
Formula (31) can be put into a nicer form by changing the parameter of integration 

This is a very useful formula, bccause it connccts a function S ( T )  which is a result of 
a single simulation with fi( T )  for T < T,. Thus a single computer run yields the 
whole function Ii(T) at once whilst in other methods a number of simulations a t  all 
the different temperatures a re  needed. Now, notice that C( T )  is not yet specified and 
indeed we know it only approximately. But fortunately l<( T )  depends much more 
sensitively on s ( r )  than on C ( T ) .  In our case, C ( T )  is almost a constant function. 
It equals one  if T approaches 0 and it becomes 4 when T tends to infinity (which is 
the result for the hard-point gas). On the other hand, the numerical determination 
of C ( T )  is an  easy problem, We found out that C ( T )  can be approximated almost 
perfectly with a rational approximation 

C(T) = f ( 1  + ( I  + T)-"). (33) 
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Figure S. The temperature prolilcs 7'(3&, t )  for four successive times t = 
1 2 0 0 , 1 2 0 0 ~ , 2 4 0 0 , 2 4 0 0 ~  (0) (from the left to Ihe right) as the resull of one- 
sided heating of the semi-inlinite cold chain for Ti, = 3. (b)  The corresponding inverse 
transforms Ii(T) are in excellent agrcement with the direct method (the circles) although 
the convergence of lempcrature profile is not ye1 eslablished. 

In figure 8 we present the results of the numerical simulation for TL = 3. The 
dependence I<( T )  is in excellent agreement with the results of the direct method 
(considering the numerical efforts) although the temperature profiles T ( s 4 , t )  have 
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not yet converged to its asymptotic function ~ ( s )  = limt-- T(sfi,t) too wellt. 
Note that T ( S )  is calculated as the average over many macro iterations. In practice 
we have used equation (31) rather than (32), so that there is no problem with inversion 
of T ( S )  and its monotonicity. We have also performed such simulations for several 
other temperatures TL = 0 . 2 5 , 1 , 4  and we have always found the same function 
K ( T )  for T < TL. 
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6. Discussion and conclusions 

The present work is a numerical demonstration of the diffusive energy transport in 

of such studies lies in the attempt to understand and demonstrate the (irreversible) 
Fourier heat law in a simple Hamiltonian system having deterministic dynamics, rather 
than an ensemble of statistically similar systems with infinitcly complicated internal 
structure such as the important case of the Lorentz gas in the Boltzmann-Grad limit 
discussed by Lehowitz and Spohn (1978). 

We have improved the statistical significance of the results (for the heat conduc- 
tivity) as compared with the results of Casati et al (1984). Our system is even simpler 
than Casati's which is decisive for a considerable improvement of the computational 
speed, and this in turn enables us to study larger systems thereby diminishing the 
statistical fluctuations. Moreover, we have checked the validity of the Fourier heat 
law for a large temperature interval, including in particular high temperatures (in 
appropriately chosen dimensionless units defined in section 2) at which the system 
approaches the integrable regime of (almost) free particles. Here for the said range 
of temperatures we have definitely excluded the possibility of an abrupt breakdown in 
the Fourier heat law. Finally, we have devised and used a new method (obsewation 
of the one-sided heating of the cold semi-infinite chain discussed in section 5) to con- 
firm the results of the direct simulation method and of the Green-Kubo formalism. 
For the purpose of verifying the validity of the Fourier heat law we found that this 
new method is superior to the previous ones. It  will be useful also in analysing other 
systems particularly when one is interested in the temperature dependence of the 
heat conductivity. The new method is quite robust in the sense that the extrapolated 
values of the scaling exponents and inferred I<( T )  converge rapidly in relation to the 
convergence of the temperature profiles. This convergence might become somewhat 
slower at higher temperatures. 

law in our simple Hamiltonian system. As discussed in the introduction there is no 
doubt that the non-integrability of classical dynamics is a necessary condition for the 
Fourier heat law to manifest itself. However, it remains an open theoretical question 
as to whether the positivity of /<-entropy is also a necessary condition. Thereby we 
succeeded in relating the chaoticity of a simple deterministic Hamiltonian system to 
an irreversible macroscopic law. 

" I V P N  .I.~ ~ i m n l e  Y L... r.- rhmimir.1 ",.." ....-. $;,step,, ,As e+!ai~ed the ifltrodsc-ax th,e i~p:,p=:%;ce 

we be!ie-x that we halve cm?incing!y dez!onstn!eb the w!idity e! the F-8:ie: heet 

t According to our phcnamenological lheory in which the lemperalure is a mnlinuous function of lhe 
psilion lhe exact scaling exponents should be f nnd a unique rescaled temperalure profile r(3) should 
mist lor all limes. nlis is no1 so due to the dixrelenesr of our model but nsymplolirally for large times 
the system approaclies this regime. 
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Appendix. Asymptotic behaviour of K ( T )  at  low temperatures 

We derive the asymptotic behaviour (22) analytically. We use a few approximations. 
In a cold ding-dong chain there are very few collisions per unit time. We shall 

therefore consider oscillators as independent and interaction as an effectively small 
perturbation. Far the sake of assumed independence we may consider only two oscil- 
iamrs, we caii them i and 2,  at inverse temperatures i j,rl = o1 = p- +a@, i j,T, = 
/32 = f3 + f A@ and study the average heat current 

(j)= f ( ( ~ z - p i ) ( ~ : - p ~ ) 6 ( q z - q q ,  t 1 ) ) .  ( k l )  

appruximai~on 
I 

We are interested in the quasi-equilibrium case /A@/@] << 1 ,  so we will always keep 

for the statistical distribution in calculating the average ( k l ) .  One might use locally 
canonical distribution pa (10) but we have already seen that this distribution gives 
(j), = 0 although it might be a very good approximation in most of the phase space. 
But we need a distribution which should be accurate a t  collision plane q2 - qI + 1 = 0 
where the current ( k l )  differs from zero. So, let us study the collision in detail. 
Betere th.e cn!!k.!on the =ci!!ators 1 and 2 have tempera:u:es TI and T2 :espec:ive!y 
and p1 > p, holds. After the collision the momenta are exchanged, pg = > p: = 
p;,  which can also be interpreted as an Ef/eclive achange of temperalures. We must 
notice that this holds only near the collision plane which is the only segment of phase 
space which is important at the moment. So, in the lowest allowed order our eflpclive 
dkfnburion would be 

on;ji ihe jcwBi*i&=i ieir,S hi A,?, idow wr find an 

(P) ( 9 )  
PeR(Q1,2>P1.?) = Pen (Pl>P,)P,,(ql1 s2) 

P2 
4rrz 

We can separate the averaging (A.l) into two parts. The first is averaging over the 
momenta and gives 

( k 3 j  I . I ” ) , ( O l  I 7 \  ( n j r  m. 
(3“’);k‘ = J dp,d?~,;iP,  - P,)(Pi - ? w P ; i ~ ? J , > ? 4  = -4 V ; lr l  

and the second is over the positions 

dqldq26(q2 - 41 + l )P%’ (q1 .42 )  = 

The integrals are all Gaussian. We have used A 0  = - A T / T 2 .  Now we get the 
result by multiplying both factors 



3472 

AT is equal to the gradient of temperature because lattice spacing is unity. This 
result confirms the asymptotic formula (22) with a slightly inaccurate leading constant 
2 / r  = 0.637 which is a consequence of the approximations we made. 

T Prosm and M Robnik 

References 

Casati G 1985 Found Phys. 16 51 
Casati G. Ford J, Vivaldi F and Visscher W M 1984 Fhys. Rex Lett 52 1861 
Casher A and Lebowitz J L 1971 1. Marh. Pllys. 12 1701 
Jackson E A, Pasta J R and N t e m  J F 1968 1. Cornput. Phys. 2 207 
Knuth D E 1968 Furrdainentol Algorilhrns VOI I lhe  An of Compum Progamming (Reading, M A  Addisan- 

WleY) 
'Pbuuitl I L sad_ Spoh!! H !978 I m c  P!*r 19 633 
- 1982 1. Stat Phys. 28 539 
- 1983 conwnun pure ~ p p l  Marh 36 595 
Mokmss F and Bljttner H 1983 I .  Phys. C: Solid Slate Phys. 16 4539 
Peierls R 1979 Surprisrs Dt lheorerical Physics (Princeton, NJ Princeton University Press) p 73 
Press W H, Flannery B E Eukolshy S A and Vellrrling W T 1990 Numen'col Reciper (Cambridge: 

Prmen T 1991 Diploma hesk Department of Phyrics. University of Ljubljana, unpublished 
Usscher W M 1974 Phys. RLV A I O  2461 

Cambridge University Press) p 326 


